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Introduction

Sound source localization is of great use in a large variety of practical
applications like video conferencing, automatic camera steering and
speaker separation. In our work we will be mostly discussing about
how the localization done in two research papers.
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Supervised Source Localization Using Diffusion Kernels

In this paper it is assumed that the position of the source is conveyed
by a single acoustic impulse response between the source and
microphone.

Prior recordings of signals from various known locations in the room
are used for training and calibration.

Let hΘ(n) be the acoustic impulse response between the microphone

and a source, at relative position Θ =

[
φ,θ,ρ

]
For generating the training data, we pick m predefined position of the
source = {θ̄1, . . . , θ̄m}.
From each position an arbitary stationary unknown input signal of
finite length is played and recorded after picked up by the microphone.

The received signal is expressed as ȳi (n) = hθ̄i (n) ∗ xi (n)
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The measurement is repeated from each source location L times
taking into account the perturbation of the source position.

Let {xij (n), yij (n)}Lj=1 be the input and output signals corresponding
to the repeated measurements.

The goal in this is to recover the source position given the measured
signal based on the prior training information.

LetΘ = {θ1, . . . , θM} denote the unknown M source positions
corresponding to the new measurements.

The signal can be expressed as

yi (n) = hθi (n) ∗ xi (n) (1)

where xi (n) and yi (n) are input and output signals of finite length.
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The covariance of the output signal yi (n) is given by

cyi (τ) = hθi (τ) ∗ hθi (−τ) ∗ cxi (τ) (2)

where cxi (τ) and cyi (τ) denote the covariance functions of xi (n) and
yi (n).

Let ci , c̄i and cij denote the covariance elements of yi (n), ȳi (n) and
yij (n).

The local covariance matrix of c̄i is

Σ̂i =
1

L

L∑
j=1

cij c
T
ij

(3)
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Affinity matrix W is computed between the m training samples in Θ̄
and the matrix klth element is calculated according to

Wk l =
π

dk l
exp

{
−

(c̄k − c̄l)
T
[
Σ̂k + Σ̂l

]−1(
c̄k − c̄l

ε

}
(4)

where ε is the kernel scale and dk l is the normalization factor.

The distance measure used above approximates the euclidean distance
between the parameters,i.e.,

‖θ̄k − θ̄l‖2 ≈ (c̄k − c̄l)
T
[
Σ̂k + Σ̂l

]−1
(c̄k − c̄l) (5)

This proposed kernel enables to capture the actual variability in terms
of the source position based on the measurements.
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Now using a set of M new sequential measurements we compute a
matrix A of dimension M by m containing the corresponding
covariance elements {ci}Mi=1 and is given by

Ak l = exp

{
−

(ck − c̄l)
T
[
Σ̂l

]−1
(ck − c̄l)

ε

}
(6)

Let Ã = AS−1/2, where S = diag{ATA1} is a diagonal matrix and
the normalized matrix satisfies W = ÃT Ã

The eigen vectors of W of length m are the left singular vectors of Ã
and are assumed to describe the m training measurements.

The right singular vectors of Ã of length M are given by

ψj =
1√
λj

Ãϕj (7)
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The right singular vectors of Ã can be viewed as the extension of the
spectral representation describing the new M measurements.

Let Ψ be the embedding of the measurements onto the space spanned
by the right singular vectors corresponding to the source position, i.e.,

Ψ : ci 7→
[
ψi

1,ψi
2,ψi

3

]
(8)

Let Ni consist of the k-nearest training measurements {c̄j} of ci in
the embedded space.

Let {γj}kj=1 be interpolation coefficients, given by

γj(ci ) =
exp
(
−‖Ψ

(
ci

)
−Ψ
(
c̄j

)
‖2/εγj

)
∑

c̄k∈Ni
exp
(
−‖Ψ

(
ci

)
−Ψ
(
c̄k

)
‖2/εγj

)
(9)
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The estimate of the source position is given by the following weighted
sum of training locations

θ̂i =
∑
c̄j∈Ni

γj
(
ci
)
θ̄i (10)

The estimation error is now defined by,

e(ci ) = ‖θi − θ̂i‖ (11)
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Manifold-Based Bayesian Inference for Semi-Supervised
Source Localization

The main goal of this paper is to estimate the target function which
receives an acoustic sample and returns its corresponding location.

The target function is estimated in this work using a Bayesian
inference framework which involves a likelihood function and a prior
probability.

The source is emitting an unknown signal s(n) which is measured by
a pair of microphones.

The noisy measurements x(n) and y(n) are given by a convolution
between the clean source signal and the corresponding AIR,
contaminated by stationary noise signals,

x(n) = a1(n, p) ∗ s(n) + u1(n)

y(n) = a2(n, p) ∗ s(n) + u2(n) (12)
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Since the acoustic transfer functions are unavailable, the RTF is
estimated as,

Ĥy x(k , p) =
Ŝy x(k, p)

Ŝx x(k , p)
' A2(k , p)

A1(k , p)
(13)

The feature vector is defined as

h(p) =
[
Ĥy x(0, p), . . . , Ĥy x(D − 1, p)

]T
(14)

Lets assume we have a training set HL consisting of l labelled RTF
samples and Hu consisiting of u unlabelled RTF samples from
unknown locations.

Our aim is to estimate the locations corresponding to a test set of q
pairs of measurement of unknown sources from unknown locations.

The position of the source is a random variable obtained as an output
of the target function that receives the RTF sample as an input.
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The target function can be estimated based on the following posterior
probability, given by bayes rule,

p(f |PL,HL,HU) ∝ p(PL|f ,HL)P(f |HL,HU) (15)

It is assumed that the measured positions PL = {p(hi )}li=1 follow a
noisy observation model, given by:

p(hi ) = f (hi ) + ηi , i = 1, . . . , l (16)

for ηi ∼ N(0, σ2),i = 1, . . . , l are iid gaussian noises independent of f .
The prior of the function is assumed to follow Gaussian process:

f ∼ GP(v , k) (17)

where v is the mean function and k is the covariance function.
The mean function is taken zero and the function k is a pairwise
function that evaluates the covariance of each pair of samples drawn
from the process f .
The covariance between f (hi ) and f (hj), given by k(hi , hj) is,

k(hi , hj) = exp−‖hi − hj‖2/εk (18)
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Instead of deriving a general estimator of the function f we estimate
the function value at some specific test point ht .

The function at the test point f (ht) and the concatenation of all
labelled training positions pL are jointly Gaussian.

This implies that the conditional distribution p(f (ht)|PL,HL) is a
multivariate Gaussian and the MAP estimator of f (ht) which
coincides with the MMSE estimator in the gaussian case is given by:

f̂ (ht) = µcond = ΣL
T
t (ΣLL + σ2Il)

−1pL (19)
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Now we will use both labelled and unlabelled data to calculate the
new prior which is a gaussian process with a modified kernel function.

We form a discrete representation of the manifold by a graph defined
over the entire training set HD .

The graph nodes are the training samples and the weights of the
edges constituting an affinity matrix W

Let G denote an abstract collection of random variables that
represent the geometry structure of the manifold.

The likelihood of the geometry variables G is defined by,

P(G |fD) ∝ exp
{
− γM

2
(f TD MfD)

}
(20)
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M is the graph laplacian given by M = S −W , where S is a diagonal
matrix given by Si i =

∑n
j=1 Wi j .

The likelihood function is a measure of correspondence between the
values of the target function f and the structure of the manifold.

In order for the model to be extendible to additional test data HT , we
make the assumption that given fD , the geometry variables are
independent of the function values in other points,i.e.
p(G |fH) = p(G |fD).

k̃(hi , hj) = k(hi , hj)− γM
T∑
Di

(In + γMMΣDD)−1MΣDj (21)

this k̃ is termed as manifold based kernel.

Based on this data driven prior, an alternative estimator for f (ht) is
given by:

f̂ (ht) = Σ̃T
Lt(Σ̃LL + σ2Il)

−1pL (22)
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