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Abstract—In this paper, we examine and compare various
contemporary signal detection schemes for overloaded multiple-
input multiple-output (MIMO) systems, where the number of
receive antennas is less than that of transmitted streams as
well as non over-loaded multiple-input multiple-output (MIMO)
systems, where the number of transmit antennas is less than that
of received streams. We try to formulate the signal detection as a
convex optimization problem. In method 1: we analysed the two
suboptimal detection receiving filter which are well researched
and understood : the receive zero-forcing filter (RxZF), and the the
receive Weiner Filter (RxWF) where we give close form solution
and present a fundamental result that receive Weiner Filter
(RxWF) converges to the zero-forcing filter for high signal-to-
noise ratio. In method 2:, we elaborate an efficient approximation
of the maximum likelihood (ML) detector for quadrature phase
shift keying (QPSK) which is based on a convex relaxation of
the ML problem. In method 3:, we uses the idea of the sum-
of-absolutevalue (SOAV) optimization, where we formulate the
signal detection as a convex optimization problem and solve it via
a fast algorithm based on Douglas-Rachford splitting. Contrary
to this, we uses an iterative approach to solve the optimization
problem so as to improve the performance, with weighting
parameters update in a cost function. Finally Simulation results
compares the bit error rate (BER) performance of all the schemes
for overloaded as well as non overloaded MIMO systems under
white as well as coloured noise scenario.

Index Terms—Overloaded MIMO Systems, Weiner Filtering,
semidefinite relaxation, proximal splitting methods, Douglas-
Rachford algorithm, SOAV optimization.

I. INTRODUCTION

The multiple-input multiple-output (MIMO) communication
systems have arise in many modern communication teech-
nology, such as multi-user communication, Massive MIMO
Systems, cooperative networks and multiple antenna channels.
It is well known that the use of multiple transmit and receive
antennas offers substantial gains to the system in comparison
to the traditional single antenna systems. The surge in interest
has occured in order to exploit these gains and to develop
a robust system that must be able to efficiently detect the
transmitted symbols at the receiver. Hence, detection in MIMO
systems is one of the fundamental problems in state-of-the-
art communication systems. Also for MIMO systems, low
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complexity signal detection method is essential because the
required computational complexity of MIMO signal detection
generally increases along with the increase of the antennas.

Existing literature on signal detection techniques can be
classified into sub-optimal or quasi-optimal MIMO detection
filters, such as the linear receivers, i.e, the zero-forcing (ZF)
which removes interference, and the minimum mean squared
error (MMSE) MIMO detectors which finds a tradeoff between
noise and interference. [?] And maximum likelihood (ML)
detector which is an optimal algorithm in the sense of min-
imum joint probability of error for detecting all the symbols
simultaneously.

The task of detection filters is to remove the distortions
generated by the channel and the perturbation caused by the
noise. One key assumption in the case of receive processing
is that the receiver knows the adopted signal processing at
the transmitter which turns out to be the major drawback of
receive filters as it increases the complexity of the receiver,
because channel estimation and adaptation of the receive filter
is necessary. For example, in the uplink of cellular mobile
radio systems, receive processing is advantageous, because the
complexity resides at the base station (BS). On the other hand,
in the downlink, receive processing leads to more complex
mobile stations (MSs).

One of the most promising suboptimal detection strategies is
the semidefinite relaxation (SDR) detector. The SDR attempt
to approximate the solution for the ML problem using a convex
program that can be efficiently solved in polynomial time.
The usual approach of the SDR problem is first to formulate
the ML problem in a higher dimension and then relax the
non-convex constraints; such relaxation will result in a semi
definite program (SDP), for which there are efficient tools to
obtain solutions in polynomial time. The success of SDR in
demodulating BPSK signaling motivated its generalization to
higher constellations, In this article we uses quadrature phase
shift keying (QPSK) constellation set.

In this paper, we examine another signal detection scheme
with much lower complexity than that of conventional schemes
where we formulate the signal detection problem as a con-
vex optimization problem, and the idea is based on the
sum-of-absolute-value (SOAV) optimization, which is a tech-
nique to reconstruct a discrete-valued vector from its linear



measurements. The optimization problem can be efficiently
solved with proximal splitting methods even for underdeter-
mined(overloaded) systems. To improve the performance, we
extend SOAV optimization to weighted-SOAV optimization,
where the prior information about the discrete-valued vec-
tor can be used, and propose an iterative approach, named
iterative weighted-SOAV (IW-SOAV), using the estimate in
the previous iteration as the prior information. Since the
weighted-SOAV optimization problem can also be efficiently
solved with proximal splitting methods, IW-SOAV can detect
the transmitted signals with low computational complexity.
Simulation results show that IW-SOAV can achieve much
better bit error rate (BER) performance than conventional
signal detection schemes.

II. METHOD 1:RECEIVE FILTERS
A. System Models And Assumptions:

Consider a MIMO system as depicted in (Fig. 1) which
consists of the transmit filter P , the channel H , and the
receive filter G. We assume that H ∈ CM×N is tall or
square (M ≥ N) for receive processing and wide or square
(M ≤ N) for transmit processing. Moreover, the number
of information symbols B does not exceed min(M,N). If we
consider receive processing, the signal processing P ∈ CN×B
at the transmitter is a priori known to the receiver and the chain
HP ∈ CM×BofP and H has full rank, i.e., rank(HP )=B.
Accordingly, the filter G ∈ CB×M at the receiver is a priori
known to the transmitter in the case of transmit processing and
GH ∈ CB×N has full rank, that is, rank(GH)=B. The system
model, as well as the derivations presented in this article, are
applicable to systems with flat fading and frequency selective
fading channels. The transmitted signal y is the desired signal
y ∈ CB transformed by the transmit filter (cf. Fig. 1)

y = Ps ∈ CN (1)

where we assume that the average transmit power is fixed

E
[
‖y‖22

]
= E

[
‖Ps‖22

]
= tr(PRsPH) = Etr. (2)

After transmission over the channel H , the received signal
is perturbed by the noise η ∈ CM and passed through the
receive filter G to obtain the estimate

s̃ = G(HPs+ η) ∈ CB . (3)

Note that we assume that the noise is uncorrelated with the
symbols, that is, E[ηsH] = 0M×B .

B. Receive Zero-Forcing Filter (RxZF):
One type of linear receive processing arises from the con-

straint that s̃ is an interference-free estimate of s. Thus, we
have to fulfill following equation [see (3)]:

s̃ |η=0M
= GHPs ≡ s. (4)

Since s is arbitrary and unknown to the receiver, the chain of
the transmit filter P , the channel H , and the receive filter G
must result in an identity mapping

GHP = 1B . (5)

Fig. 1.

Note that this constraint can be fulfilled, because we as-
sumed rank(HP )=B. With the above constraint and (3), the
MSE of the RxZF (without the scalar Wiener filter of Fig. 1)
can be shown to be the noise power at the filter output

E
[
‖s− s̃‖22

]
= E

[
‖Gη‖22

]
. (6)

The RxZF minimizes the above MSE and removes the inter-
ference [cf. (8)]

GZF = argminGE
[
‖Gη‖22

]
s.t.: GHP = 1B . (7)

With the Lagrangian multiplier method (e.g., [77]), we obtain
the RxZF

GZF =
(
PHHHR−1η HP

)−1
PHHHR−1η ∈ CB×M . (8)

C. Receive Wiener Filter (RxWF):
The RxWF minimizes the MSE without an additional con-

straint [see also (3)]

GWF = argminGE
[
‖s− s̃‖22

]
. (9)

After setting the derivative of the MSE to zero, we yield

GWF =
(
PHHHR−1η HP +R−1s

)−1
PHHHR−1η (10)

where we utilized the matrix inversion lemma (e.g., [79]).
Equation (12) helps to understand the dependence of the
RxWF on the SNR. The second summand can be neglected
for high SNR and the RxWF converges to the RxZF [cf.
(10)] MSE of the given MIMO system can be expressed as:

ε = E
[
‖s− ŝ‖22

]
= E

[
‖s− αs̃‖22

]
∈ R0,+ (11)

We need a scalar Wiener filter α at the end of the filter chain
to get a reasonable comparison. The scalar Wiener filter Îś
minimizes the MSE E[‖s − αs̃‖22] of (4) and is found in a
similar way as GWF. We obtain for the scalar Wiener filter

α =
tr
(
RsP

HHHGH
)

tr
(
G
(
HPRsP

HHH +Rη

)
GH
) ∈ C (12)

III. METHOD 2:SEMI DEFINITE RELAXATION
One of the most promising suboptimal detection strategies

is the semidefinite relaxation (SDR) detector, which recently
gained considerable attention. The main reason for the high
computational complexity of the ML detector is due to the
fact that it is a non convex optimization problem. SDR is an
attempt to approximate it using a convex program that can be
efficiently solved in polynomial time.



A. System Models And Assumptions:
Consider the standard MIMO channel

y = Hs + w (13)

where y is the received signal of length N, H is an N ×
K channel matrix, s is the length K vector of transmitted
symbols, and w is a length N complex normal zero-mean noise
vector with covariance σ2I. The symbols of s belong to some
known complex constellation. In this article, we consider the
QPSK constellation, i.e., the real part and the imaginary part
of si for i=1,. . ., K belong to the set {±1}.

In order to avoid the need to handle complex-valued vari-
ables, it is customary to use the following decoupled model:

y = Hs + w (14)

where

y =

[
Re{ỹ}
Im{ỹ}

]
,H =

[
Re{H̃} −Im{H̃}
Im{H̃} Re{H̃}

]
,

s =

[
Re{s̃}
Im{s̃}

]
,v =

[
Re{ṽ}
Im{ṽ}

]
.

Using these definitions, the ML detector of the transmitted
symbols is {

mins ‖y −Hs‖22
s.t. si ∈ {±1}, i = 1, . . . , 2K.

(15)

The program ML is a combinatorial problem and can be solved
by searching over all of the 4K possibilities. Clearly, as K
increases, this option becomes impractical.

B. SDR via Rank Relaxation:
The key observation that leads to the SDR is that the

constraint si ∈ {±1} for i = 1, . . . , 2K can be expressed
as

(si + 1)(si − 1) = 0, i = 1, . . . , 2K. (16)

We can use eqn.(16) to rewrite the problem ML as{
mins ‖y −Hs‖22

s.t s2i − 1 = 0, i = 1, . . . , 2K
(17)

The next step in deriving the SDR is formulating the optimiza-
tion problem in a higher dimension. We replace the vectors s
with a rank-one semidefinite matrix W = wwT , where

wT =
[
sT 1

]
(18)

Using this change of variables, we can easily identify W1,1 =
ssT , W 2,2 = 1, W 1,2 = s, and W 2,1 = sT , where
W i,j , for i,j=1, 2, are the (i,j)th sub-blocks of W of appro-
priate sizes. Therefore, problem in (17) is equivalent to

minW Tr

W

HTH 0 −HTy
0 0 0

−yTH 0 yTy


s.t. diag {W1,1} −W2,2 = 0

W � 0
W2,2 = 1

rank(W) = 1

(19)

The above program is not convex because of the rank-one
constraint. Dropping this constraint results in the SDR

minW Tr

W

HTH 0 −HTy
0 0 0

−yTH 0 yTy


s.t. diag {W1,1} −W2,2 = 0

W � 0
W2,2 = 1

(20)

Note that the SDR has a linear objective subject to affine
equalities and a linear matrix inequality. Such problems are
known as SDP and can be efficiently solved in polynomial
time. If the optimal argument W of SDR has rank one, then
the relaxation is tight, and the ML solution of s is the first 2K
elements of the last column of W. Otherwise, SDR is only an
approximation of ML, and there is no strict relation between
W and s. Instead, there are a few standard techniques for
approximating s based on W

• Singularvalue decomposition: Let u denote the eigen-
vector of associated with its maximal eigenvalue. Then

ŝi = quantize
(

ui
u2K+1

)
, i = 1, . . . , 2K.

(22)

where Ik̃,m =
√
LÍk̃,m, with average power Pm = ṔmL.

• Randomization: Let W̃ = VTV be the Cholesky
factorization of W̃ and denote the columns of V by vi. Then

ŝi = quantize

(
vTi r

vT2K+1r

)
, i = 1, . . . , 2K

(23)

where r is a random vector uniformly distributed on a (2K+1)-
dimensional unit sphere. In order to improve the approxima-
tion quality, the randomization is repeated a number of times,
and the solution yielding the best objective value is chosen.

IV. METHOD 3:SOAV OPTIMIZATION

SOAV optimization is a technique to reconstruct an un-
known discrete-valued vector as x = [x1 · · ·xN ]T ∈
{c1, . . . , cP }N ⊂ RN from its linear measurements η =
Ax, where A ∈ RM×N . If we assume Pr(xi = cp) =
1/P (p = 1, . . . , P ) for all xi (i = 1, . . . , N), each of
x − c11, . . . ,x − cP1 has approximately N/P zero elements.
Based on this property and the idea of `1 optimization in
compressed sensing, SOAV optimization solves

minimize
x∈RN

1

P

P∑
p=1

‖x− cp1‖1

subject to η = Ax (24)

to reconstruct x from η.



A. Signal Detection via SOAV Optimization:
In MIMO systems, the transmitted signal vector s is

commonly discrete and the received signal vector y can be
regarded as its linear observations if the noise can be ignored.
Since each element of s is 1 or âĹŠ1 for the case with
QPSK, we can formulate the signal detection problem as
SOAV optimization, i.e.,

minimize
z∈R2n

1

2
‖z − 1‖1 +

1

2
‖z + 1‖1

subject to y = Hz. (25)

Since the received signal vector y contains the additive noise,
we modify the optimization problem as follows:

minimize
z∈R2n

1

2
‖z − 1‖1 +

1

2
‖z + 1‖1

+
α

2
‖y = Hz‖22 (26)

by using the idea of `1 − `2 optimization. Here, α > 0 is
a given constant. The solution of above minimization can be
obtained with the following theorem.
• Theorem: Let φ1, φ2 : R2n → (−∞,∞] be lower semi-

continuous convex functions and (ri dom φ1)∩ (ri dom φ2) 6=
∅. In addition, φ1(z)+φ2(z)→∞ as ‖z‖2 →∞ is assumed.
A sequence zk(k = 0, 1, . . .) converging to the solution of

minimize
z∈R2n

φ1(z) + φ2(z) (27)

can be obtained by using the following Douglas-Rachford
algorithm. Here, the proximity operator of a function φ :
R2n → R is defined as

proxφ(z) = arg min
u∈R2n

φ(u) +
1

2
‖z − u‖22. (28)

• Algorithm 1. Douglas-rachford algorithm 1)Fix ε ∈
(0, 1), γ > 0 and r0 ∈ R2n 2)For k = 0, 1, 2, . . . iterate

zk = proxγφ2
(rk)

λk ∈ [ε, 2− ε]
rk+1 = rk + λk(proxγφ1

(2zk − rk)− zk).

(29)

We can rewrite (8) as

minimize
z∈R2n

f(z) + g(z), (30)

where f(z) = ‖z − 1‖1/2 + ‖z + 1‖1/2 and g(z) = α‖y −
Hz‖22/2. The proximity operators of γf(z) and γg(z) can
be obtained as

[proxγf (z)]j =



zj + γ (zj < −1− γ)

−1 (−1− γ ≤ zj < −1)

zj (−1 ≤ zj ≤ 1)

1 (1 ≤ zj < 1 + γ)

zj − γ (1 + γ ≤ zj)

, (31)

and

proxγg(z) = (I + αγHTH)−1(z + αγHTy), (32)

Fig. 2.

respectively, where [proxγf (z)]j (j = 1, . . . , 2n) represents
the jth element of proxγf (z). Note that [proxγf (z)]j is a
function of zj only as shown in Fig. 1. By solving (8) with the
Douglas-Rachford algorithm, the estimate of the transmitted
signal vector s can be obtained.

B. An Iterative Approach: IW-SOAV
Assuming that we have information on prior probabilities

of w+
j = Pr(sj = 1) and w−j = Pr(sj = −1), we extend the

problem of (8) to weighted-SOAV optimization problem as

minimize
z∈R2n

2n∑
j=1

(w+
j |zj − 1|+w−j |zj + 1|)

+
α

2
‖y −Hz‖22. (33)

If there is no prior information about s, i.e., w+
j = w−j = 1/2,

the optimization problem (14) is equivalent to (8). If w+
j > w−j

then arg min
zj

fwj
(zj) = 1, where fwj

(zj) = w+
j |zj − 1| +

w−j |zj + 1|, thus the solution of zj in (14) tends to take the
value close to 1, and vice versa. The optimization problem (14)
can also be solved by using the Douglas-Rachford algorithm.
The proximity operator of

γfw(z) = γ

2n∑
j=1

(w+
j |zj − 1|+ w−j |zj + 1|) (34)

can be written as

[proxγfw(z)]j

=



zj + γ (zj < −1− γ)

−1 (−1− γ ≤ zj < −1− djγ)

zj + djγ (−1− djγ ≤ zj < 1− djγ)

1 (1− djγ ≤ zj < 1 + γ)

zj − γ (1 + γ ≤ zj)

(35)

as shown in Fig. 2, where dj = w+
j − w

−
j . By solving the

optimization problem (14) via the Douglas-Rachford algorithm
with proxγfw and proxγg, a new estimate of the transmitted
signal vector s can be obtained. The prior information on s
is not available in a common scenario, however, assuming
iterative approach, the estimate in the previous iteration can
be used to obtain the prior probabilities. Specifically, in the



Fig. 3.

Fig. 4.

proposed iterative approach named IW-SOAV, we iteratively
solve the weighted-SOAV optimization problem (14) while
updating the parameters w+

j and w−j (i = 1, . . . , 2n) as

w+
j =


0 (ŝj < −1)
1+ŝj
2 (−1 ≤ ŝj < 1)

1 (1 ≤ ŝj)
(36)

and

w−j = 1− w+
j =


1 (ŝj < −1)
1−ŝj
2 (−1 ≤ ŝj < 1),

0 (1 ≤ ŝj)
(37)

where ŝj is the estimate of sj in the previous iteration. Fig.
3 shows w+

j and w−j as a function of ŝj . w+
j is large when

ŝj is large, and w−j is large when ŝj is small. This is because
the estimates close to 1 or âĹŠ1 will be more reliable than
those close to 0. The proposed algorithm of IW-SOAV is
summarized as follows:
• Algorithm 2. Signal Detection via IW-SOAV 1) Let ŝ = 0

and iterate a)-c) for L times. a) Compute w+
j ,w−j with (17),

(18). b) Fix ε ∈ j ∈ (0, 1), γ > 0,K > 0, and r0 ∈ R2n. c)
For k = 0, 1, 2, . . . ,K, iterate

zk = proxγg(rk)

λk ∈ [ε, 2− ε]
rk+l = rk + λk(proxγfw(2zk − rk)− zk)

(38)

and let ŝ = zK .
2) Obtain sgn(ŝ) as the final estimate of s.

V. SIMULATION RESULTS:
In this section we compare the various detection filters by

applying them to overloaded MIMO system(50×30) and non
overloaded MIMO system (30 × 50) using computer simula-
tions. The SOAV program was solveed using cvx package[5].
The Transmit filter P has identity mapping i.e. P rx = 12.

Fig. 5. BER Vs SNR plots for non-overloaded(30 × 50) MIMO systems
under spatially coloured noise scenerio.

Fig. 6. BER Vs SNR plots for non-overloaded(30 × 50) MIMO systems
under AWGN scenerio.

Per channel realization 100 QPSK symbols for each of the
B=2 parallel data streams are transmitted, where we assume
uncorrelated data streams and noise, i.e., Rs = 12 and
Rη = ση212

. We set the transmit power to Etr = 2, that
is, unit transmit power is used for one symbol in the average.
We assume uncorrelated Rayleigh fading and normalize the
channel matrix such that E[‖H‖2F] = 1. The transmitter
knows the exact instantaneous channel state information.In the
simulation for method2 and method3, flat Rayleigh fading
channels are assumed and H̃ is composed of independent
and identically distributed complex Gaussian random variables
with zero mean and unit variance. Fig.6 and Fig.8 depicts the
comparative analysis under spatially coloured noise, when the
noise η has the covariance matrix

Rη =
σ2
η

11

[
11 9
9 11

]
It may be the case that the performance of the given schemes
may vary on changing the number of antennas at the transmit-
ter or receiver end. In method3 The parameter α is selected as
α = 10−4, 10−3, 10−2, 10−1, 1, 1, and 1 for SNR per receive
antenna of 0, 5, 10, 15, 20, 25, and 30 (dB), respectively. The
other parameters of the proposed schemes are set as K=50,
ε = 0.1, γ = 1, λk = 1.9 (k = 0, 1, . . . ,K)



Fig. 7. BER Vs SNR plots for overloaded(50 × 30) MIMO systems under
spatially coloured noise scenerio.

Fig. 8. BER Vs SNR plots for overloaded(50 × 30) MIMO systems under
AWGN scenerio.

VI. CONCLUSION:

The design of robust detecting filters is an pervasive
challenge in the field of communication systems. Hence in
this section we try to present a comprehensible comparison
between the various detection schemes which were discussed
in the earlier sections.
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Fig. 9.

BER comparison under White noise scenario :
Name of Detection Tech-
nique

SNR= SNR=
3

SNR=

Rx Zero Forcing Filter AF AFG 004
Rx Weiner Filter AX ALA 248
SDR via rank relaxation AL ALB 008
SDR via EVD DZ DZA 012
SOAV Optimization L=1 AS ASM 016
SOAV Optimization L=10 AD AND 020

BER comparison under coloured noise scenario :
Name of Detection Tech-
nique

SNR= SNR=
3

SNR=

Rx Zero Forcing Filter AF AFG 004
Rx Weiner Filter AX ALA 248
SDR via rank relaxation AL ALB 008
SDR via EVD DZ DZA 012
SOAV Optimization L=1 AS ASM 016
SOAV Optimization L=10 AD AND 020

As it is apparent from the above table that


